Folate-targeted gadolinium-lipid-based nanoparticles as a bimodal contrast agent for tumor fluorescent and magnetic resonance imaging.
نویسندگان
چکیده
To enhance tumor magnetic resonance imaging (MRI) signals via the selective accumulation of contrast agents, we prepared folate-modified gadolinium-lipid-based nanoparticles as MRI contrast agents. Folate-modified nanoparticles were comprised of polyethylene glycol (PEG)-lipid, gadolinium diethylenetriamine pentaacetic acid lipid, cationic cholesterol derivatives, folate-conjugated PEG-lipid, and Cy7-PEG-lipid. Folate receptor-mediated cellular nanoparticle association was examined in KB cells, which overexpress the folate receptor. The biodistribution of nanoparticles after their intravenous injection into KB tumor-bearing mice was measured. Mice were imaged through in vivo fluorescence imaging and MRI 24 h after nanoparticle injection, and the intensity enhancement of the tumor MRI signal was evaluated. Increased cellular association of folate-modified nanoparticles was inhibited by excess free folic acid, indicating that nanoparticle association was folate receptor-mediated. Irrespective of folate modification, the amount of nanoparticles in blood 24 h after injection was ca. 10% of the injected dose. Compared with non-modified nanoparticles, folate-modified nanoparticles exhibited significant accumulation in tumor tissues without altering other biodistribution, as well as enhanced tumor fluorescence and MRI signal intensity. The results support the feasibility of MRI- and in vivo fluorescence imaging-based tumor visualization using folate-modified nanoparticles and provide opportunities to develop folate targeting-based imaging applications.
منابع مشابه
Glucosamine Conjugated Gadolinium (III) Oxide Nanoparticles as a Novel Targeted Contrast Agent for Cancer Diagnosis in MRI
Background: Glucose transporter (Glut), a cellular transmembrane receptor, has a key role in the metabolism of cell glucose and is also associated with various human carcinomas.Objective: In this study, we evaluated a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic gadolinium oxide (Gd2O3) coated polycyclodextrin (PCD) and mod...
متن کاملA New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).
Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity. Materials ...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 37 4 شماره
صفحات -
تاریخ انتشار 2014